Search results for "Knowledge ecosystem"
showing 5 items of 5 documents
An introduction to knowledge computing
2014
This paper deals with the challenges related to self-management and evolution of massive knowledge collections. We can assume that a self-managed knowledge graph needs a kind of a hybrid of: an explicit declarative self-knowledge (as knowledge about own properties and capabilities) and an explicit procedural self-knowledge (as knowledge on how to utilize own properties and the capabilities for the self-management).We offer an extension to a traditional RDF model of describing knowledge graphs according to the Semantic Web standards so that it will also allow to a knowledge entity to autonomously perform or query from remote services different computational executions needed. We also introdu…
Large Scale Knowledge Matching with Balanced Efficiency-Effectiveness Using LSH Forest
2017
Evolving Knowledge Ecosystems were proposed to approach the Big Data challenge, following the hypothesis that knowledge evolves in a way similar to biological systems. Therefore, the inner working of the knowledge ecosystem can be spotted from natural evolution. An evolving knowledge ecosystem consists of Knowledge Organisms, which form a representation of the knowledge, and the environment in which they reside. The environment consists of contexts, which are composed of so-called knowledge tokens. These tokens are ontological fragments extracted from information tokens, in turn, which originate from the streams of information flowing into the ecosystem. In this article we investigate the u…
Large Scale Knowledge Matching with Balanced Efficiency-Effectiveness Using LSH Forest
2017
Evolving Knowledge Ecosystems were proposed to approach the Big Data challenge, following the hypothesis that knowledge evolves in a way similar to biological systems. Therefore, the inner working of the knowledge ecosystem can be spotted from natural evolution. An evolving knowledge ecosystem consists of Knowledge Organisms, which form a representation of the knowledge, and the environment in which they reside. The environment consists of contexts, which are composed of so-called knowledge tokens. These tokens are ontological fragments extracted from information tokens, in turn, which originate from the streams of information flowing into the ecosystem. In this article we investigate the u…
Neural Multimodal Belief Tracker with Adaptive Attention for Dialogue Systems
2019
Multimodal dialogue systems are attracting increasing attention with a more natural and informative way for human-computer interaction. As one of its core components, the belief tracker estimates the user's goal at each step of the dialogue and provides a direct way to validate the ability of dialogue understanding. However, existing studies on belief trackers are largely limited to textual modality, which cannot be easily extended to capture the rich semantics in multimodal systems such as those with product images. For example, in fashion domain, the visual appearance of clothes play a crucial role in understanding the user's intention. In this case, the existing belief trackers may fail …
Balanced Large Scale Knowledge Matching Using LSH Forest
2015
Evolving Knowledge Ecosystems were proposed recently to approach the Big Data challenge, following the hypothesis that knowledge evolves in a way similar to biological systems. Therefore, the inner working of the knowledge ecosystem can be spotted from natural evolution. An evolving knowledge ecosystem consists of Knowledge Organisms, which form a representation of the knowledge, and the environment in which they reside. The environment consists of contexts, which are composed of so-called knowledge tokens. These tokens are ontological fragments extracted from information tokens, in turn, which originate from the streams of information flowing into the ecosystem. In this article we investig…